Tuesday, January 9, 2018

Project: La gestione del sedimento nella realizzazione di servizi ecosistemici e nel controllo dei processi alluvionali.

The propoposal "La gestione del sedimento nella realizzazione di servizi ecosistemici e nel controllo dei processi alluvionali" was submitted yesterday for the call of MATTM.
The call is at this link (and it is for Geologists ?!). Actually the topics require some geology and a loto of hydrology and hydraulics. This is how the world goes.
The proposal can be found in this OSF site, called: "Gestione del Sedimento".  It is in Italian, but I will provide the translation of the following:

Abstract: The management of sediments for providing  ecosystem services and control alluvional processes. 

The project is about the management of sediments in mountains catchments with the quantitative determination of erosion and mass transport. The research is made looking at the applicatio of 2000/60 and 2007/60 EU directives.
In the project's first phase:
Hydrological analysis utilises a multi-model strategy based on GEOtop and GEOFRAME-NewAGE and other open-source models.
It is estimated the sediment availability and its connectivity to the river network, by using field surveys, data made available from previous research and models.
Transport of sediments will be will be obtained with obtained with biphasic models where water and sediment are treated separately.
Objective of the above phases is to localise the sources and the sediment residence time, to detect its interaction with anthropic works and infrastructures and determine how they (the sediments) can interact with the climatic forcings.

Objective of the application phase are:
  • the production of flooding hazard and risk maps;
  • the forecasting on the proximate and long period of the morphologic chages or river beds, under climate change simulated through “weather generators”.
  • The estimation of the impact of hydraulic works, also back in the years. 
In the present project we will use a connectivity index to estimate the connection between hillslope (source sediment areas) and some target catchments’ elements (the river network, specific streams, the outlet). Sediment source areas are, partially already available from existing databases (CNR IRPI, Provincia Autonoma di Trento, Regione Sicilia), from field surveys and from remote sensing. These data are partially already available from previous projects (ASI MORFEO, CLIMAWARE, AQUATERRA, GLOBAQUA) and by the local Institutions (Geological Service of Trento Province and Regione Sicilia).

Terrein analysis will be coupled with models of landslide triggering, able to account for climate and soil use variability (in space and time) as described as variation of:

  • intensity and frequency of precipitation,
  • precipitation from snow to rain,
  • phenology of vegetation cover

Two areas will be studied, one in the Alps and another in Apennines. The first is the Avisio torrent, and in in particolar the subcatchment closed at the Stramentizzo dam (Molina di Fiemme, TN), analysed with detailed especially in some specific parts.

The Apennine basin is the Giampilieri torrent in Messina Province.

References (that appears in the State-of-Art):

Badoux, A., Andres, N., and Turowski, J.,M., Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279-294, 2014.

Bertoldi et al., 2006 Bertoldi, G., Rigon, R., & Over, T. (2006). Impact of Watershed Geomorphic Characteristics on the Energy and Water Budgets. Journal of Hydrometeorology, 7(3), 389–403.

Berzi, D., Fraccarollo, L., Turbulence Locality and Granularlike Fluid Shear Viscosity in Collisional Suspensions (2015), Physical Review Letters, 115 (19), art. no. 194501. Comiti F., and

Farabegoli, E; Morandi, M.C.; Onorevoli G.; and Tonidandel, D.; Shallow landsliding susceptibility in a grass mantled alpine catchment (Duron valley, Dolomites, Italy), in preparation, 2018

Mao, L., Recent advances in the dynamics of steep channels, in Gravel-bed Rivers: Processes, Tools, Environments, John Wiley&Sons, Chichester, UK, 351-377, 2012.

Bracken, C., B. Rajagopalan, and E. Zagona (2014), A hidden Markov model combined with climate indices for multidecadal streamflow simulation, Water Resour. Res., 50, 7836–7846, doi:10.1002/2014WR015567.

Montgomery D.R., and Buffington J.M., Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull, v. 109, no. 5, pp. 596–611, 1997.

Renard, 1997 Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agr. Handbook No. 703. Washington, D.C.: USDA, Government Printing Office.

Rigon et al., 2006, Rigon, R., Bertoldi, G., Over, T. M., & Over, T. (2006). GEOtop: a distribute hydrological model with coupled water and energy budgets. Journal of Hydrometeorology, 7, 371–388.

Rosatti, G., Zorzi, N., Zugliani, D., Piffer, S. and Rizzi, A., Web Service ecosystem for high-quality, cost-effective debris-flow hazard assessment, 33-47, Env. Modelling & Software,  2018.

Smith, T.R., e F.P. Bretherton. «Stability and the conservation of mass in drainagebasin evolution.» Water Resource Research 8 (1972): 1506-1529. 


Sofia, G., Di Stefano, C, Ferro, V., Tarolli, P. (2017). Morphological similarity of channels: from hillslopes to alpine landscapes. Land Degradation & Development, 28, 1717–1728, doi:10.1002/esp.4081. 


Tarolli, P. (2016). Humans and the Earth’s surface, Earth Surface Processes and Landforms, 41, 2301–2304, doi:10.1002/esp.4059. 


Tucker et al., 2001 Tucker, G. E., Lancaster, S. T., Gasparini, N. M., & Bras, R. L. (2006). The Channel-Hillslope Integrated Landscape Development Model (CHILD), 1–32.

Wainwright, J., A. J. Parsons, J. R. Cooper, P. Gao, J. A. Gillies, L. Mao, J. D. Orford, and P. G. Knight (2015), The concept of transport capacity in geomorphology, Rev. Geophys., 53, 1155–1202, doi:10.1002/2014RG000474.

Saturday, January 6, 2018

Miles Traer - It is time for superheores to be environmentally concerned ;-)

I could not do it, to go to New Orleans Fall Meeting this year (but we had a couple of presentations). 
Among others, ut came to my attention a funny session entitled: PA13C Science and Sci-Fi: Using Real Science to Explore Fictional Worlds Posters, with which is nice to begin the series od 2018 posts.

The argument is made to attract attention on Climate Change and Earth Sciences, and have some fun in doing it (see here the Washington Post report)

A couple of poster of the session are available: the first one by the Convener, Traer himself analizes the energy requirements of some superheroes and you can see  the poster in the figure above. His arguments remind me the history of the banned superheroes in The Incredibles

The science below is kind of weak because you have to do some violation of physics (at least the known one) since the beginning when you accept that they can exist (but see the celebrate Kakalios book which takes another route to is), and actually many concerns can be raised on calculation (Geoscientists are nerds too). 

A second poster of some interest is the Engelman and Chure’s one concerned about T-Rex and Godzilla.


Miles Traer’s blog is nice to visit too, either for the comics and the rest.  

Sunday, December 31, 2017

Baldocchi's Classics

I took the  freedom to reproduce Dennis Baldocchi's classic. The original post is on his website to which I dedicated another post. A must for who is interested in Soil-Vegetation-Atmosphere interactions.  I just added the link to the publications (on the title when pdf is open).
As a post of mine, it can be seen as a companion of the two recent posts on plant-atmosphere interactions where further references are presented (I and II).


Agriculture and Climate

1. Lobell, D.B., Schlenker, W. and Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-20.

2. Lobell, D.B. and Gourdji, S.M., 2012. The influence of climate change on global crop productivity. Plant Physiology, 160(4): 1686-97.

3. Foley, J.A. et al., 2011. Solutions for a cultivated planet. Nature, 478(7369): 337-42.

4. Rosenzweig, C. and Parry, M.L., 1994. Potential impact of climate-change on world food-supply. Nature, 367(6459): 133-138.

Biogeochemistry

1. Bolin, B. and H. Rodhe. 1973. Note on Concepts of Age Distribution and Transit-Time in Natural Reservoirs. Tellus 25:58-62.

Boundary Layer Micrometeorology
1. Kaimal, J. C., Y. Izumi, J. C. Wyngaard, and R. Cote. 1972. Spectral Characteristics of Surface-Layer Turbulence. Quarterly Journal of the Royal Meteorological Society 98:563-&.

2. Hogstrom, U. 1988. Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface-Layer - a Re-Evaluation. Boundary-Layer Meteorology 42:55-78.
https://link.springer.com/article/10.1007%2FBF00119875?LI=true

3. Kaimal, J. C. and J. C. Wyngaard. 1990. The Kansas and Minnesota Experiments. Boundary-Layer Meteorology 50:31-47.
https://link.springer.com/article/10.1007/BF00120517

4. Wyngaard, J.C., 1992. Atmospheric-Turbulence. Annual Review of Fluid Mechanics, 24: 205-233.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.24.010192.001225

5. Hogstrom, U. 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorology 78:215-246.
https://link.springer.com/article/10.1007%2FBF00120937?LI=true

6. Foken, T., 2006. 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer Meteorology, 119(3): 431-447.

7. Wyngaard, J. C. 1990. Scalar Fluxes in the Planetary Boundary-Layer - Theory, Modeling, and Measurement. Boundary-Layer Meteorology 50:49-75.
https://link.springer.com/article/10.1007/BF00120518

Canopy Conductance

1. Finnigan, J. J. and M. R. Raupach. 1987. Transfer processes in plant canopies in relation to stomatal characteristics. Pages 385-429 in E. Zeiger, editor. Stomatal Function. Stanford University Press, Palo Alto, CA.

2. Raupach, M.R., 1995. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agricultural and Forest Meteorology, 73(3-4): 151-179.

3. Kelliher, F.M., Leuning, R., Raupach, M.R. and Schulze, E.-D., 1995. Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73(1-2): 1-16.

Canopy micrometeorology and turbulence

1. Denmead, O. T. and E. F. Bradley. 1987. On Scalar Transport in Plant Canopies. Irrigation Science 8:131-149.
https://link.springer.com/article/10.1007/BF00259477

2. Finnigan, J., 2000. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech., 32(1): 519-571.

3. Raupach, M.R. and Thom, A.S., 1981. Turbulence in and above Plant Canopies. Annual Review of Fluid Mechanics, 13: 97-129.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.13.010181.000525?journalCode=fluid

4. Raupach, M. R., J. J. Finnigan, and Y. Brunet. 1996. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology 78:351-382.
https://link.springer.com/article/10.1007/BF00120941


CO2 Fluxes, Pioneering Studies


1. Monteith, J. L. and G. Szeicz. 1960. et. Quarterly Journal of the Royal Meteorological Society 86:205-214.
http://onlinelibrary.wiley.com/doi/10.1002/qj.49708636810/abstract


J2. Desjardins, R. 1974. Technique to Measure Co2 Exchange under Field Conditions. International Journal of Biometeorology 18:76-83.
https://link.springer.com/article/10.1007/BF01450667


3. Anderson, D. E., S. B. Verma, and N. J. Rosenberg. 1984. Eddy-correlation measurements of CO2, latent-heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology 29:263-272.


CO2 Fluxes, syntheses


1. Baldocchi, D.D., 2008. TURNER REVIEW No. 15. 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany 56, 1-26.

2. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.

3. Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichsteins, M., Papale, D., Piao, S.L., Schulzes, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beers, C., Bernhoffer, C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolar, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13, 2509-2537.

Dry Deposition

1. Wesely, M. L. and B. B. Hicks. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34:2261-2282.
http://www.sciencedirect.com/science/article/pii/S1352231099004677

2. Wesely, M. L. 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment 23:1293-1304.

3.Wesely, M. L. and B. B. Hicks. A review of current status of knowledge on dry deposition, 2000 Atmospheric Environment 34:2261-2282.
http://www.sciencedirect.com/science/article/pii/S1352231099004677

4. Fowler, D., K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Laj, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horváth, F. Loreto, Ü. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Brüggemann, S. Zechmeister-Boltenstern, J. Williams, C. O'Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman. 2009. Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment 43:5193-5267.
http://www.sciencedirect.com/science/article/pii/S1352231009006633


Ecosystem Atmosphere Interactions

1. Watson, A. and J. Lovelock. 1983. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35b:286-289.

2. Odum, E. P. 1969. Strategy of Ecosystem Development. Science 164:262-270.


Ecosystem Structure and Function

1. Van Bodegom, P. M., J. C. Douma, J. P. M. Witte, J. C. Ordoñez, R. P. Bartholomeus, and R. Aerts. 2012. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography 21:625-636.
http://onlinelibrary.wiley.com/doi/10.1111/j.1466-8238.2011.00717.x/abstract

2. Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. PNAS 94:13730-13734.

3. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, F. A. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M.-L. Nava, Ü. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.

Eddy Covariance Flux measurements

1. Moore, C. J. 1986. Frequency response corrections for eddy covariance systems. Boundary Layer Meteorology 37:17-35.

2. McMillen, R. T. 1988. An Eddy-Correlation Technique with Extended Applicability to Non-Simple Terrain. Boundary-Layer Meteorology 43:231-245.
https://link.springer.com/article/10.1007%2FBF00128405?LI=true

3. Baldocchi, D. D., B. B. Hicks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology. 69:1331-1340.

4. Foken, T. and B. Wichura. 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78:83-105.
http://www.sciencedirect.com/science/article/pii/0168192395022481

5. Aubinet, M. et al., 2000. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113-175.
http://www.sciencedirect.com/science/article/pii/S0065250408600185

6. Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biol, 9: 479-492.

7. Lee, X.H., Massman, W.J., 2011. A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections. Boundary-Layer Meteorology 139, 37-59.

Energetics of crop production

1. Monteith, J. L. 1977. Climate and Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 281:277-294.

2. Loomis, R. S. 1971. Agricultural Productivity. Annual Review of Plant Physiology 22:431-&.
http://www.annualreviews.org/doi/pdf/10.1146/annurev.pp.22.060171.002243

3. Lemon, E., D. W. Stewart, and Shawcroft, R.W.. 1971. Sun work in a cornfield. Science 174:371
http://science.sciencemag.org/content/174/4007/371


Energy Balance Closure



1. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113, 223-243.

2. Foken, T. 2008. The energy balance closure problem: An overview. Ecological Applications 18:1351-1367.

3. Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology 156, 65-74.

Evaporation

1. Monteith, J. L. 1965. Evaporation and Environment. Pages 205-234 Symposium Society of Experimental Biology XIX.

2. Monteith, J. L. 1981. Evaporation and Surface-Temperature. Quarterly Journal of the Royal Meteorological Society 107:1-27.

3. Jarvis, P.G. and McNaughton, K.G., 1986. Stomatal Control of Transpiration - Scaling up from Leaf to Region. Advances in Ecological Research, 15: 1-49.
https://www.sciencedirect.com/science/article/pii/S0065250408601191

4. Raupach, M.R., 2001. Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society, 127(574): 1149-1181.
http://onlinelibrary.wiley.com/doi/10.1002/qj.49712757402/full

5. Shuttleworth, W.J., 2007. Putting the 'vap' into evaporation. Hydrology and Earth System Sciences 11, 210-244.

6. Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange. 2012. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system.
Reviews of Geophysics 50.

Flux Footprint

1. Schmid, H. P. 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology 113:159-183.

2. Vesala, T., U. Rannik, M. Leclerc, T. Foken, and K. Sabelfeld. 2004. Flux and concentration footprints. Agricultural and Forest Meteorology 127:111-116.

3. Hsieh, C. I. and G. Katul. 2009. The Lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. International Journal of Biometeorology 53:87-100.

Flux Processing, Partitioning and Gap filling

1. Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, and H. Dolman. 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107:71-77.

2. Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1429.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2005.001002.x/abstract

3. Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147, 209-232.


Gross Primary Production from Remote Sensing, Regional and Global Upscaling


1. Running, S. W., D. D. Baldocchi, D. Turner, S. T. Gower, P. Bakwin, and K. Hibbard (1999), A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite data, Remote Sensing of the Environment., 70, 108-127.

2. Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones, G. Murray-Tortarolo, D. Papale, N. C. Parazoo, P. Peylin, S. Piao, S. Sitch, N. Viovy, A. Wiltshire, and M. Zhao. 2015. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics: doi 10.1002/2015RG000483.

3. Xiao, X., C. Jin, and J. Dong. 2014. Gross Primary Production of Terrestrial Vegetation. Pages 127-148 in J. M. Hanes, editor. Biophysical Applications of Satellite Remote Sensing. Springer Berlin Heidelberg.
https://link.springer.com/chapter/10.1007/978-3-642-25047-7_5

4. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.


Hyperspectral remote sensing and surface Fluxes

1. Gamon, J. A., et al. (2011), SpecNet revisited: bridging flux and remote sensing communities, Canadian Journal of Remote Sensing, 36, S376-S390.
http://www.tandfonline.com/doi/abs/10.5589/m10-067?journalCode=ujrs20

2. Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green. 2004. Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523-534.


3. Porcar-Castell, A., E. Tyystjarvi, J. Atherton, C. van der Tol, J. Flexas, E. E. Pfundel, J. Moreno, C. Frankenberg, and J. A. Berry. 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65:4065-4095.

Instruments

1. Wyngaard, J. C. 1981. Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research. Annual Review of Fluid Mechanics 13:399-423.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.13.010181.002151?journalCode=fluid

2. Werle, P., F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker. 2002. Near- and mid-infrared laser-optical sensors for gas analysis. Optics and Lasers in Engineering 37:101-114.

3. Long, S. P., P. K. Farage, and R. L. Garcia. 1996. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. Journal of Experimental Botany 47:1629-1642.


Land-Atmosphere-Climate Interactions

1. Dickinson, R. E. 1983. Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics 25:305-353.
http://www.sciencedirect.com/science/article/pii/S0065268708601764

2. Sellers, P.J. et al., 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299): 502-509.

3. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate 15:3123-3149.

4. Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.

5. Jackson, R. B., J. T. Randerson, J. G. Canadell, R. G. Anderson, R. Avissar, D. D. Baldocchi, G. B. Bonan, K. Caldeira, N. S. Diffenbaugh, C. B. Field, B. A. Hungate, E. G. Jobb, Protecting climate with forests, Environmental Research Letters, 3, 4, 2008

6. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570-574.


Leaf Area Index and Canopy Structure

1. Wilson, J. W. 1965. Stand Structure and Light Penetration. I. Analysis by Point Quadrats. Journal of Applied Ecology 2:383-390.
https://www.jstor.org/stable/2401487?seq=1#page_scan_tab_contents

2. Lang, A. R. G. 1987. Simplified estimate of leaf area index from transmittance of the sun's beam. Agricultural and Forest Meteorology 41:179-186.
http://www.sciencedirect.com/science/article/pii/0168192387900785

3. Chen, J.M., 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2-4): 135-163.

4. Lefsky, M. A., W. B. Cohen, G. Parker, and D. J. Harding. 2002. Lidar remote sensing for ecosystem studies. Bioscience 52:19-30.

5. Jonckheere, I. et al., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2): 19-35.

6. Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., Baldocchi, D.D., 2010. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology 150, 63-76.


Leaf Boundary Layers

1. Leuning, R. 1983. Transport of Gases into Leaves. Plant Cell and Environment 6:181-194
http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11587617/abstract

2. Schuepp, P., 1993. Tansley Review No. 59. Leaf Boundary Layers. New Phytologist 125, 477-507.


Leaf Energy Balance


1. Paw U, K. T. and W. Gao. 1988. Applications of solutions to non-linear energy budget equations. Agricultural and Forest Meteorology 43:121-145.
http://www.sciencedirect.com/science/article/pii/0168192388900871

2. Leuning, R. 1989. Leaf Energy Balances - Developments and Applications. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 324:191-206.


Leaf photosynthesis/transpiration/stomatal conductance models
1. Jarvis, P. G. 1976. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in Field. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 273:593-610.

2. Farquhar, G. D., S. V. Caemmerer, and J. A. Berry. 1980. A Biochemical-Model of Photosynthetic Co2 Assimilation in Leaves of C-3 Species. Planta 149:78-90.

3. Farquhar, G.D. and Sharkey, T.D., 1982. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 33: 317-345.
http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533?journalCode=arplant.1

4. Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2-4): 107-136.
http://www.sciencedirect.com/science/article/pii/0168192391900028

5. Leuning, R., 1995. A Critical-Appraisal of a Combined Stomatal-Photosynthesis Model for C-3 Plants. Plant Cell and Environment, 18(4): 339-355.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00370.x/abstract


Leaf-Canopy Modeling, Carbon, Water and Heat Fluxes and Microclimate
1. DeWit, C. T. 1965. Photosynthesis of leaf canopies. Centre for Agricultural Publications and Documentation.

2. Duncan, W. G., R. S. Loomis, W. A. Williams, and R. Hanau. 1967. A Model for Simulating Photosynthesis in Plant Communities. Hilgardia 38:181-&.

3. Sinclair, T. R., C. E. Murphy, and K. R. Knoerr. 1976. Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration. Journal of Applied Ecology 13:813-829.
http://www.jstor.org/stable/2402257?seq=1#page_scan_tab_contents

4. Goudriaan, J. 1977. Crop micrometeorology: a simulation study.

5. Norman, J.M., 1979. Modeling the complete crop canopy. In: B.J. Barfield and J.F. Gerber (Editor), Modification of the aerial environment of plants. , American Society of Agricultural Engineering, St. Joseph, MI, pp. 249
https://www.abebooks.com/9780916150150/Modification-Aerial-Environment-Plants-ASAE-0916150151/plp

6. Raupach, M.R. and Finnigan, J.J., 1988. Single-Layer Models of Evaporation from Plant Canopies Are Incorrect but Useful, Whereas Multilayer Models Are Correct but Useless - Discuss. Australian Journal of Plant Physiology, 15(6): 705-716.
http://www.publish.csiro.au/fp/PP9880705

7. Baldocchi, D. D. and P. C. Harley. 1995. Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: model testing and application. Plant, Cell and Environment 8:1157-1173.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00625.x/abstract

8. dePury, D. G. G. and G. D. Farquhar. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell and Environment 20:537-557.

9. Amthor, J. S. 1994. Scaling Co2-Photosynthesis Relationships from the Leaf to the Canopy. Photosynthesis research 39:321-350.
https://link.springer.com/article/10.1007/BF00014590

Methane

1. Cicerone, R.J. and Oremland, R.S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299-327.

2. Conrad, R., 1989. Control of methane production in terrestrial ecosystems. In: M.O. Andreae and D.S. Schimel (Editors), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Wiley, Chichester, UK, pp. 39-58.
https://www.amazon.com/Exchange-Terrestrial-Ecosystems-Atmosphere-Workshop/dp/0471925519

3. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4): 609-+.

4. Whalen, S.C., 2005. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environmental Engineering Science, 22(1): 73-94.
http://online.liebertpub.com/doi/pdf/10.1089/ees.2005.22.73

5. Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. L. Zhuang. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19:1325-1346.

Phenology

1. Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156-173.

2. Kramer, K., I. Leinonen, and D. Loustau. 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean ecosystems, an overview. International Journal of Biometeorology 44:67-75.

3. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-KÜBler, P. Bissolli, O. G. BraslavskÁ, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. MÅGe, A. Mestre, Ø. Nordli, J. PeÑUelas, P. Pirinen, V. RemiŠOvÁ, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F.-E. Wielgolaski, S. Zach, and A. N. A. Zust. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969-1976.


Planetary Boundary Layer and Surface Flux Feedbacks
1. McNaughton, K.G. and Spriggs, T.W., 1986. A Mixed-Layer Model for Regional Evaporation. Boundary-Layer Meteorology, 34(3): 243-262.
https://link.springer.com/article/10.1007%2FBF00122381?LI=true

2. Raupach, M.R., 1998. Influences of local feedbacks on land-air exchanges of energy and carbon. Global Change Biology, 4(5): 477-494.
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2486.1998.t01-1-00155.x/abstract

3. Juang, J.-Y., G. Katul, M. Siqueira, P. Stoy, and K. Novick. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters 34.

4. van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag. 2009. Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quarterly Journal of the Royal Meteorological Society 135:1277-1291.

5. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.

6. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.


Radiative Transfer in vegetation (Phytoactinometry)

1. Lemeur, R. and Blad, B.L., 1974. A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agricultural Meteorology, 14(1-2): 255-286.
http://www.sciencedirect.com/science/article/pii/0002157174900247

2. Ross, J., 1976. Radiative Transfer in Plant Communities. In: J.L. Monteith (Editor), Vegetation and the Atmosphere, vol 1. Academic Press, London.
https://www.cambridge.org/core/journals/experimental-agriculture/article/vegetation-and-the-atmosphere-ed-monteith-j-l-london-academic-press-1975-vol-1-principles-pp-298-10-vol-2-case-studies-pp-459-15/04F40452ABFD73983036C698417851F1
(https://jrls2017.to.ee/download/m59a7aaf73b44f)

3. Ross, J. 1980. The Radiation Regime and Architecture of Plant Stands. Dr. W Junk, The Hague. http://link.springer.com/book/10.1007%2F978-94-009-8647-3

4. Myneni, R.B., Ross, J. and Asrar, G., 1989. A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 45(1-2): 1-153.
http://www.sciencedirect.com/science/article/pii/0168192389900026

5. Ustin, S. L., S. Jacquemoud, and Y. Govaerts. 2001. Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant Cell Environ 24:1095-1103.

6. Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. Francois, and S. L. Ustin. 2009. PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment 113:S56-S66.


Scientific Method


1. Tuomivaara, T., P. Hari, H. Rita, and R. Hakkinen. 1994. The guide-dog approach: a methodology for ecology. Department of Forest Ecology publications.


Soil Respiration


1. Raich, J., Schlesinger, W., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81 - 90.

2. Trumbore, S., 2009. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Planet. Sci. Annual Reviews, Palo Alto, pp. 47-66.

3. Kuzyakov, Y., Gavrichkova, O., 2010. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16, 3386-3406.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02179.x/abstract

Soil Respiration, Flux-Gradient and Chamber measurements


1. Livingston, G.P. and Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In: R.C. Harriss (Editor), Biogenic trace gases: Measuring emissions from soil and water. Blackwell Scientific, London, pp. 14-51.

2. Hutchinson, G.L. and Rochette, P., 2003. Non-Flow-Through Steady-State Chambers for Measuring Soil Respiration: Numerical Evaluation of Their Performance. Soil Sci Soc Am J, 67(1): 166-180.

3. Maier, M., and H. Schack-Kirchner (2014), Using the gradient method to determine soil gas flux: A review, Agricultural and Forest Meteorology, 192


Soil-Plant-Atmosphere Continuum

1. Shawcroft, R. W., E. R. Lemon, L. H. Allen, D. W. Stewart, and S. E. Jensen. 1974. SOIL-PLANT-ATMOSPHERE MODEL AND SOME OF ITS PREDICTIONS. Agricultural Meteorology 14:287-307.

2. Jarvis, P. G., W. R. N. Edwards, and H. Talbot. 1981. Models of Plant and Crop Water Use. Pages 151-193 in D. A. Rose and D. A. Charles-Edwards, editors. Mathematics and Plant Physiology. Academic Press, London.

3. Tuzet, A., A. Perrier, and R. Leuning. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell and Environment 26:1097-1116.

4. Katul, G., R. Leuning, and R. Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339-350.


Soils, moisture, heat, CO2

1. Clapp, R.B. and Hornberger, G.M., 1978. Empirical Equations for Some Soil Hydraulic-Properties. Water Resources Research, 14(4): 601-604.

2. van Genuchten, M.T. and Sudicky, E.A., 1999. Recent advances in Vadose zone flow and transport modeling. In: M. Parlange and J.W. Hopmans (Editors), Vadose Zone Hydrology. Oxford Press, New York, pp. 155-193.
https://www.amazon.com/Vadose-Zone-Hydrology-Cutting-Disciplines/dp/0195109902

3. Simunek, J. and Suarez, D.L., 1993. Modeling of carbon-dioxide transport and production in soil. 1. Model development. Water Resources Research, 29: 487-497.


Stable isotopes

1. Bowling, D.R., Pataki, D.E., Randerson, J.T., 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist 178, 24-40.

2. Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H., P.Tu, K., 2002. Stable isotope in plant ecology. Annual Review Ecology Systematics 33, 507-559.

3. Griffis, T. J. (2013), Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application, Agricultural and Forest Meteorology, 174
http://www.sciencedirect.com/science/article/pii/S0168192313000373


Stomatal Optimization Models


1. Cowan, I. and G. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. Symposium of the Society of Experimental Biology 31:471-505.

2. Hari, P., A. Makela, E. Korpilahti, and M. Holmberg. 1986. Optimal control of gas exchange. Tree Physiology 2:169-175.
https://academic.oup.com/treephys/article-abstract/2/1-2-3/169/1623649

3. Makela, A., F. Berninger, and P. Hari. 1996. Optimal Control of Gas Exchange during Drought: Theoretical Analysis. Annals of Botany 77:461-468.

4. Katul, G., S. Manzoni, S. Palmroth, and R. Oren. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105:431-442


Trace Gas Exchange, VOCs



1. Fuentes, J.D. et al., 2000. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society, 81(7): 1537-1575.

2. Monson, R.K. and Holland, E.A., 2001. Biospheric trace gas fluxes and their control over tropospheric chemistry. Annual Review of Ecology and Systematics, 32: 547-+.

3. Sharkey, T.D. and Yeh, S., 2001. Isoprene emission from plants. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1): 407-436.

4. Megonigal, J.P., Hines, M.E. and Visscher, P.T., 2003. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry. Pergamon, Oxford, pp. 317-424.

5. Laothawornkitkul, J., J. E. Taylor, N. D. Paul, and C. N. Hewitt. 2009. Biogenic volatile organic compounds in the Earth system. The New phytologist 183:27-51.

Friday, December 22, 2017

Estimating water budgets with JGrass-NewAGE

We already talked about water budgets, and the papers of ours that deals with it (see below). Because in this Fall AGU meeting there was a dedicated session, we presented an abstract:

Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. Closing the budget in the two cases was different. Worth to say, it was much more difficult to close the budget at Posina, since at the large scale satellite platform can reasonably help to validate the results. At the smallest scale ground measurements usually available do not guarantee the closure of the budget without making additional hypothesis and remote sensing data cannot give very much help.  The hypothesis that we made is that the groundwater storage comes back to the initial level after a certain time, that we called Budyko time, TB. This time can be fixed arbitrarily, for instance, to five years and then varied to assess, through these trials the uncertainty of the budget. The large scale case was largely supported by remote sensing data, instead, either for calibration and/or validation. This contribution explains how we actually did, clarifies some aspects of the informatics necessary to obtain it and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.
Finally we analyse the problem of travel times [e.g. Rigon et  al., 2016a, Rigon et al, 2016b]  as it comes out from considering the multiple fluxes and storages and discuss how much they can be realistic. All considerations and  simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution presented in Bancheri [2017].

As we say in the presentation, we could not talk about the travel times. However there are several other places where you can find about, here. 
Clicking on the above Figure, you will see the presentation that was used in NewOrleas. However, on Youtube, we uploaded an extended version with comments. 

References

Abera, W., Formetta, G., Borga, M., & Rigon, R. (2017). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, 104, 1–18. http://doi.org/10.1016/j.advwatres.2017.03.010

Abera, W., Formetta, Brocca, L., & Rigon, R. (2017), Modelling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrol. Earth Syst. Sci., 21, 3145–3165, 2017

Rigon, R., Bancheri, M., & Green, T. R. (2016). Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences, 20(12), 4929–4947. http://doi.org/10.5194/hess-20-4929-2016