Tuesday, March 24, 2015

Probabilità in pillole

Per imparare bene la teoria delle probabilità, non c'e' dubbio lo studio approfondito di qualche buon libro è necessario. Per una piccola bibliografia personale, si veda il post "Learn Statistics and Probability!" Ma per una ripasso in pillole, ecco quanto detto e fatto a lezione:

1 - Introduzione (Audio 2015: 6Mb)
2 - Assiomi (Audio 2015: 12.6 Mb)
3 - Domini discreti e Spazi metrici (Audio 2015: 11.3 Mb)
4 - Distribuzioni uniforme e gaussiana univariate (Audio 2015: 13.9 Mb)
5 - Distribuzioni univariate di interesse idrologico (Audio 2015: 7.9 Mb)
6 - Random sampling
7 - Il teorema del limite centrale e la legge dei grandi numeri (Audio 2015: 4.2 Mb)

Altre risorse:

Le slides tutte assieme: Un ripasso di probabilità.

Audio 2014:

I Assiomi, Bayes etc. - 22Mb;
II - Distribuzioni di Probabilità - 5.6 Mb).

Qui un sintetico manualetto con alcuni temi "non standard" (dovuto a Falcioni Vulpiani).

Monday, March 23, 2015

Le precipitazioni

Ecco le slides divise sulle precipitazioni divise per argomenti.

1  - La circolazione generale e i gradienti barici
2  - Il gradiente adiabatico di temperatura
3  - La stabilità atmosferica
4  - L'evoluzione giornaliera dello strato limite
5  - Meccanismi di formazione delle precipitazioni

6  - Un po' di riassunto e di sintesi (Audio 2015. 18.3 Mb)
7  - Le caratteristiche delle precipitazioni al suolo (Audio 2015. 12.3 Mb)
8  - Le precipitazioni estreme e le curve di possibilità pluviometrica (Audio 2015. 14.9 Mb)
9  - La distribuzione di Gumbel (Audio 2015. 9.9 Mb)
10 - Gumbel - Metodo dei momenti
11 - Gumbel - Massima Verosimiglianza
12 - Gumbel - Minimi Quadrati
13 - Test di Pearson
14 - Chi quadro
15 -  GEV
16 -  Calcolo delle linee segnalatrici di possibilità pluviometrica con R^3
17 - - La misura delle precipitazioni (e gli errori della misura, secondo Lanza et al., 2005) - Audio 2014 (12.4 Mb);

Gli audio del 2014:

6/7 - Audio: Generalità (33.9 Mb);
8 - Precipitazioni estreme (19.7 Mb);
9 /11 - Gumbel Distribution, metodo dei momenti, metodo della massima verosimiglianza (13.2 Mb);
12 - Metodo dei minimi quadrati (5.3 Mb).
14 - Chi Quadro (20.7 Mb)

Note

^1 - Il mio post su R può servire per partire. Sul sito di R si trovano varie risorse per imparare ad usare R. Un gruppo italiano di utenti di R è Rante e li' vi si trova anche un manuale introduttivo ad R.  Tra gli altri strumenti, in inglese, ci sono quelli che potete trovare qui.   I contributi ad R si susseguono così velocemente che ogni giorno ce ne sono di migliori. Quindi tenete d'occhio il web. C'e' anche una versione del libro di Matloff, The Art of R programming.

^2 -  Trovate al link il file delle portate 1990-2005.txt  e il file della Pluviometria di Paperopoli (Unix/Mac o  MS-Windows) utilizzati a lezione. Qui, invece,  lo script di R con tutti i comandi eseguiti nella lezione del 2 Aprile 2012

^3 Lo script di R relativo alla lezione del 19 Aprile 2012
     Gli script di R relativi alla lezione del 25 Marzo 2013: I e II
     Lo script di R della lezione del 15 Aprile 2013 relativi alla derivazione delle curve di possibilità    pluviometrica. Qui il notebook creato con knitr dello stesso script




Esempi di relazione e materiale correlato

Una relazione sulle curve di possibilità pluviometrica
- Di Aaron Iemma (qui): in realtà bastava citare la teoria statistica, ma Aaron ha voluto essere qui un pò scholar. Buona anche perchè Aaron ha fornito una serie di script per riprodurre tutto quanto ha fatto, mutata mutandis (qui gli script).

Bibliografia

Albertson, J., and M. Parlange, Surface Length Scales and Shear Stress: Implications for Land-Atmosphere Interaction Over Complex Terrain, Water Resour. Res., vol. 35, n. 7, p. 2121-2132, 1999

Burlando, P. and R. Rosso, (1992) Extreme storm rainfall and climatic change, Atmospheric Res., 27 (1-3), 169-189.

Burlando, P. and R. Rosso, (1993) Stochastic Models of Temporal Rainfall: Reproducibility, Estimation and Prediction of Extreme Events, in: Salas, J.D., R. Harboe, e J. Marco-Segura (eds.), Stochastic Hydrology in its Use in Water Resources Systems Simulation and Optimization, Proc. of NATO-ASI Workshop, Peniscola, Spain, September 18-29, 1989, Kluwer, pp. 137-173.

Burlando, P. e R. Rosso, (1996) Scaling and multiscaling Depth-Duration-Frequency curves of storm precipitation, J. Hydrol., vol. 187/1-2, pp. 45-64.

Burlando, P. and R. Rosso, (2002) Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy, Hydrol. Process., 16, 1151-1175.

Burlando, P. and R. Rosso, (2002) Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability of the Arno River, central Italy, Hydrol. Process., 16, 1177-1199. 

 Coles S.,‘‘An Introduction to Statistical Modeling of Extreme Values, Springer, 2001

 Coles, S., and Davinson E., Statistical Modelling of Extreme Values, 2008

Foufula-Georgiou, Lectures at 2008 Summer School on Environmental Dynamics, 2008

Fréchet M., Sur la loi de probabilité de l'écart maximum, Annales de la Société Polonaise de Mathematique, Crocovie, vol. 6, p. 93-116, 1927

Gumbel,  On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Phil. Mag. vol. 6, p. 157-175, 1900

 Houze, Clouds Dynamics, Academic Press, 1994

Kleissl J., V. Kumar, C. Meneveau, M. B. Parlange, Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions, Water Resour. Res., 42, W06D10, doi:10.1029/2005WR004685, 2006

Kottegoda and R. Rosso,  Applied statistics for civil and environmental engineers, Blackwell, 2008

Kumar V., J. Kleissl, C. Meneveau, M. B. Parlange, Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues, Water Resour. Res., 42, W06D09, doi:10.1029/2005WR004651, 2006

Lettenmaier D.,  Stochastic modeling of precipitation with applications to climate model downscaling, in von Storch  and, Navarra A.,  Analysis of Climate Variability: Applications and Statistical Techniques,1995


Salzman, William R. (2001-08-21). "Clapeyron and Clausius–Clapeyron Equations" (in English). Chemical Thermodynamics. University of Arizona. Archived from the original on 2007-07-07. http://web.archive.org/web/20070607143600/http://www.chem.arizona.edu/~salzmanr/480a/480ants/clapeyro/clapeyro.html. Retrieved 2007-10-11.

von Storch H, and Zwiers F. W, Statistical Analysis in climate Research, Cambridge University Press, 2001

Whiteman, Mountain Meteorology, Oxford University Press, p. 355, 2000

Misura e rappresentazione dei dati idrologici

Ecco qui la presentazione sui dati idrologici, suddivisa in parti:




Tutto il blocco di argomentii assieme nella versione 2014. Audio (21.6 Mb)

Bibliografia

  • Agnoli, P.,  Il senso della misura, la codifica della realtà tra filosofia, scienza ed  esistenza umana, Armando Editore, 2004            
  • Agnoli, P., Breve introduzione storica alle prime unità di misura, http://www.roma1.infn.it/~dagos/SSIS/PaoloAgnoli_appuntimisure.pdf , 2006, last retrieved 2011/03/18
  • AA.VV, Le misure nella scienza, nella tecnica, nella società, Manuale di metrologia,  a cura di S. Sartori,   Paravia, Torino,1979
  • AA. VV,  Le misure di grandezze fisiche, a  cura di E. Arri e S. Sartori, Paravia, 
  • Torino,1984 
  • Burroughs, W., J, Weather Cycles,  Cambridge U. P.,  2003
  • Grünewald, T., Schirmer, M., Mott, R., & Lehning, M. (2010). Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere, 4(2), 215-225. doi:10.5194/tc-4-215-2010
  • Loreti, M., Teoria degli Errori e Fondamenti di Statistica: Introduzione alla Fisica Sperimentale, 2006, http://wwwcdf.pd.infn.it/labo/INDEX.html, last retrieved 2011/03/18
  • Roth, K. (2007). Soil Physics Lecture Notes (p. 1-340), 2007, http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/soil_physics/students/lecture_notes05/sp.pdf, last retrieved 2011/03/18
  •  Shuttleworth, W. James (January/February 2008). "Evapotranspiration Measurement Methods". Southwest Hydrology (Tucson, AZ) 7 (1): 22–23. Retrieved 2009-07-22.
  • Western, Andrew W. (2005). "Principles of Hydrological Measurements". In Anderson, Malcolm G.. Encyclopedia of Hydrological Sciences. 1. West Sussex, England: John Wiley & Sons Inc.. pp. 75–94
  • Tabony, R. C.  (1979), A spectral filter analysis of long period records in England and Wales, Meterol. Mag. 108, 97-119 
  • Zambrano-Bigiarini, M. (2010). On the effects of hydrological uncertainty in assessing the impacts of climate change on water resources, 1-293.

Links to web sites

Saturday, March 21, 2015

Four interesting papers on Hydrological modelling

I met the first time Martyn Clark in Fort Collins last summer. USGS scientist Stacey Archfield organised a meeting for modellers (to which I was not invited :-( ), and Martyn was part of the crew.
I did not his work up to recently. and after our meeting, he came out with three Water Resources Research Papers, that I annotating here for subsequent readings.


Clark, M. P., Kavetski, D., & Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47(9), n/a–n/a. doi:10.1029/2010WR009827

Pablo A. Mendoza, Martyn P. Clark, Michael Barlage, Balaji Rajagopalan, Luis Samaniego, Gab Abramowitz and Hoshin Gupta, Are we unnecessarily constraining the agility of complex process-based models? , Water Resources Research, Volume 51, Issue 1, pages 716–728, January 2015

Clark, M. P., B. Nijssen, J. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, J. E. Freer, E. D. Gutmann, A. E. Wood, L. D. Brekke, J. A. Arnold, D. Gochis, R. Rasmussen. 2015. A unified approach for process-based hydrologic modeling: Part 1. Modeling concept, Water Resources Research, doi:10.1002/2015WR017198.

Clark, M. P., B. Nijssen, J. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, E. D. Gutmann, A. W. Wood, D. Gochis, R. Rasmussen, D. Tarboton, V. Mahat, G. Flerschinger, D. Marks. 2015. A unified approach for process-based hydrologic modeling: Part 2. Model implementation and case studies, Water Resources Research, doi:10.1002/2015WR017200.


A late addition, the technical note regarding this SUMMA stuff.

Thursday, March 19, 2015

JGrass-NewAGE essentials

Also JGrass-NewAGE posts have grown too much. So where to start, when you want to know something about this system ? 

A good reading is for sure, the history of JGrass-NewAGE.  The second step is giving a look to the papers at in the three references here following their order.

Finally browsing the rest of the posts, and the rest of references you find would complete the task.

References

1 - Formetta G., Antonello A., Franceschi S., David O., and Rigon R., Hydrological modelling with components: A GIS-based open-source framework, Environmental Modelling & Software, 5 (2014), 190-200

2 - Formetta, G.; Mantilla, R.; Franceschi, S., Antonello A., Rigon R., The JGrass- NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing, Geoscientific Model Development Volume: 4 Issue: 4 Pages: 943-955, DOI: 10.5194/gmd-4- 943-201, 2011 

3 - Formetta, G., Kampf, S. K., David, O., and Rigon, R.: Snow water equivalent modeling components in NewAge-JGrass, Geosci. Model Dev., 7, 725-736, doi:10.5194/gmd-7-725-2014, 2014.



Other two ERC Grants in Water related topics

They escape to my attention so far, but other two ERC grants were given to water scientists. First grant was given to Dani Or (GS, Blog)

“The Hidden Frontier: Quantitative Exploration of Physical and Ecological Origins of Microbial Diversity in Soil”



and, as the name let's to understand is related to the soil ecology of and microbiology.
The other ERC grant was given to Marco Dentz (GS) on Transport and mixing:

Sunday, March 8, 2015

The geomorphic unit hydrograph from a historical-critical perspective

I have just submitted to the review process a paper on the geomorphic unit hydrograph. It crosses close to four decades of progress the field of describing the treatment of the hydrologic response with the travel time concept, and hopefully was able to convey the core of the ideas behind this very nice (and effective) theory, and to open the way to new researches. The paper was submitted for a special issue of Earth Surface Processes and Landforms.

Its abstract:
"In this paper we present a brief overview of Geomorphic Instanteneous Unit Hydro- graph (GIUH) theories and analyze their successful path without hiding their limitations. The history of the GIUH can be subdivided into three major chapters. The first chap- ter is based on the pioneering work by Rodríguez-Iturbe and Valdés (1979), and Gupta and Waymire (1983), which recognized that a treatment of water discharges with ”travel times” could give a rich interpretation of the theory of the Instantaneous Unit Hydrograph (IUH). We show how this was possible, what assumptions were made, which of these assumptions can be relaxed, and which have become obsolete and been discarded. The second chapter focuses on the Width Function Based IUH (WFIUH) approach and its achievements in assessing the interplay of the topology and geometry of the network with water dynamics. The limitations of the WFIUH approach are described, and a way to work around them is suggested. Finally, a new formal approach to estimating the water budget by ”travel times”, which derives from a suitable use of the water budget equation and some mixing hypotheses, has been disentangled and presented."


The little post on the width function can be considered a complementary reading too. 

Bibliography (including some more papers)


Band LE, 1986. Topographic Partition of Watersheds with Digital Elevation Models. Water Resources Research 22(1): 15–24. ISSN 1944-7973. doi:10.1029/WR022i001p00015.

Beven KJ, 2011. Rainfall-runoff modelling: the primer. John Wiley & Sons.

Botter G, Bertuzzo E, Rinaldo A, 2010. Transport in the hydrologic response: Travel time dis- tributions, soil moisture dynamics, and the old water paradox. Water Resources Research 46(3): n/a–n/a. ISSN 1944-7973. doi:10.1029/2009WR008371.

Botter G, Bertuzzo E, Rinaldo A, 2011. Catchment residence and travel time distributions: The master equation. Geophysical Research Letters 38(11): L11403. ISSN 1944-8007. doi:10.1029/2011GL047666.

Botter G, Rinaldo A, 2003. Scale effect on geomorphologic and kinematic dispersion. Water Resour. Res. 39: 10 PP. doi:200310.1029/2003WR002154.

Comola F, Schaefli B, Rinaldo A, Lehning M, 2015. Thermodynamics in the hydrologic re- sponse: Travel time formulation and application to Alpine catchments. Water Resources Research : n/a–n/aISSN 1944-7973. doi:10.1002/2014WR016228.

Cudennec C, Fouad Y, Gatot IS, Duchesne J, 2004. A geomorphological explanation of the unit hydrograph concept. Hydrol. Process. 18(4): 603–621. ISSN 0885-6087. doi: 10.1002/hyp.1368.

Cudennec C, Slimani M, Le Goulven P, 2005. Accounting for sparsely observed rainfall space-time variability in a rainfall-runoff model of a semiarid Tunisian basin. Hydrolog. Sci. J. 50(4): 617–630. ISSN 0262-6667. doi:10.1623/hysj.2005.50.4.617.

Córdova J, Rodríguez-Iturbe I, 1983. Geomorphoclimatic estimation of extreme flow probabilities. Journal of Hydrology 65(1–3): 159 – 173. ISSN 0022-1694. doi: http://dx.doi.org/10.1016/0022-1694(83)90215-9. Scale Problems in Hydrology.

Dagan G, Nguyen V, 1989. A comparison of travel time and concentration approaches to modeling transport by groundwater. Journal of Contaminant Hydrology 4(1): 79 – 91. ISSN 0169-7722. doi:http://dx.doi.org/10.1016/0169-7722(89)90027-2.

de Lavenne A, Boudhraâ H, Cudennec C, 2013. Streamflow prediction in ungauged basins through geomorphology-based hydrograph transposition. Hydrology Research doi: 10.2166/nh.2013.099. In press.

de Lavenne A, Rigon R, Formetta G, Cudennec C, 2015. What is the best WFIUH transfer function? .

Dingman SL, 1994. Physical Hydrology. Macmillan, New York.

D’Odorico P, Rigon R, 2003. Hillslope and channel contributions to the hydrologic response.
Water Resour. Res. 39(5): 1113. ISSN 0043-1397. doi:10.1029/2002WR001708.

Dooge JCI, 2003. Linear Theory of Hydrologic Systems, volume 1. EGU Reprint Series,
Katlenburg-Lindau, Germany.

Fairfield J, Leymarie P, 1991. Drainage networks from grid digital elevation models. Water Resources Research 27(5): 709–717. ISSN 1944-7973. doi:10.1029/90WR02658.

Fenicia F, Savenije HHG, Matgen P, Pfister L, 2008. Understanding catchment behavior through stepwise model concept improvement. Water Resour. Res. 44(1): W01402. ISSN 0043-1397. doi:10.1029/2006WR005563.

Formetta G, Mantilla R, Franceschi S, Antonello A, Rigon R, 2011. The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing. Geoscientific Model Development 4(4): 943– 955. doi:10.5194/gmd-4-943-2011.

Grimaldi S, Petroselli A, Alonso G, Nardi F, 2010. Flow time estimation with spatially variable hillslope velocity in ungauged basins. Adv. Water. Resour. 33(10, Sp. Iss. SI): 1216–1223. ISSN 0309-1708. doi:10.1016/j.advwatres.2010.06.003.

Grimaldi S, Petroselli A, Nardi F, 2012. A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins. Hydrolog. Sci. J. 57(1): 73–83. doi:10.1080/02626667.2011.636045.

Gupta VK, Mesa OJ, 1988. Runoff generation and hydrologic response via channel network geomorphology — Recent progress and open problems. J. Hydrol. 102(1–4): 3–28. ISSN 0022-1694. doi:10.1016/0022-1694(88)90089-3.

Gupta VK, Waymire E, 1983. On the formulation of an analytical approach to hydrologic response and similarity at the basin scale. J. Hydrol. 65(1–3): 95–123. ISSN 0022-1694. doi:10.1016/0022-1694(83)90212-3. 

Gupta VK, Waymire E, Wang CT, 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resour. Res. 16(5): 855–862. doi: 198010.1029/WR016i005p00855.

Hall MJ, Zaki AF, Shahin MMA, 2001. Regional analysis using the Geomorphoclimatic In- stantaneous Unit Hydrograph. Hydrol. Earth Syst. Sci. 5(1): 93–102. doi:10.5194/hess-5- 93-2001.

Kirkby MJ, 1976. Tests of the random network model, and its application to basin hydrology. Earth Surface Processes 1(3): 197–212. ISSN 1931-8065. doi:10.1002/esp.3290010302.

Leopold LB, Maddock T, 1953. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications. US Geol. Surv. Prof. Pap. 252: 56.

McDonnell JJ, McGuire K, Aggarwal P, Beven KJ, Biondi D, Destouni G, Dunn S, James A, Kirchner J, Kraft P, Lyon S, Maloszewski P, Newman B, Pfister L, Rinaldo A, Rodhe A,

Sayama T, Seibert J, Solomon K, Soulsby C, Stewart M, Tetzlaff D, Tobin C, Troch P, Weiler M, Western A, Wörman A, Wrede S, 2010. How old is streamwater? Open ques- tions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes 24(12): 1745–1754. ISSN 1099-1085. doi:10.1002/hyp.7796.

McGuire KJ, McDonnell JJ, 2006. A review and evaluation of catchment transit time modeling. Journal of Hydrology 330(3–4): 543 – 563. ISSN 0022-1694. doi: http://dx.doi.org/10.1016/j.jhydrol.2006.04.020.

Mesa O, Mifflin E, 1986. On the Relative Role of Hillslope and Network Geometry in Hy- drologic Response. In V Gupta, I Rodríguez-Iturbe, E Wood (eds.), Scale Problems in Hydrology, Springer Netherlands, volume 6 of Water Science and Technology Library. ISBN 978-94-010-8579-3, pages 1–17. doi:10.1007/978-94-009-4678-1_1.

Morse P, Feshbach H, 1953. Methods of theoretical physics. Cambridge University Press.

Naden P, Broadhurst P, Tauveron N, Walker A, 1999. River routing at the continental scale: use of globally-available data and an a priori method of parameter estimation. Hydrology and Earth System Sciences 3(1): 109–123. doi:10.5194/hess-3-109-1999.

Naden PS, 1992. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrolog. Sci. J. 37(1): 53–71. ISSN 0262-6667. doi: 10.1080/02626669209492561. 

Nicótina L, Alessi Celegon E, Rinaldo A, Marani M, 2008. On the impact of rainfall patterns on the hydrologic response. Water Resources Research 44(12): W12401. ISSN 1944-7973. doi:10.1029/2007WR006654.

Niemi AJ, 1977. Residence time distributions of variable flow processes. The International Journal of Applied Radiation and Isotopes 28(10–11): 855 – 860. ISSN 0020-708X. doi: http://dx.doi.org/10.1016/0020-708X(77)90026-6.

Pattison I, Lane SN, Hardy RJ, Reaney SM, 2014. The role of tributary relative timing and sequencing in controlling large floods. Water Resources Research 50(7): 5444–5458. ISSN 1944-7973. doi:10.1002/2013WR014067.

Rigon R, D’Odorico P, Bertoldi G, 2011. The geomorphic structure of the runoff peak. Hydrol. Earth Syst. Sci. 15(6): 1853–1863. doi:10.5194/hess-15-1853-2011.

Rinaldo A, Beven KJ, Bertuzzo E, Nicotina L, Davies J, Fiori A, Russo D, Botter G, 2011. Catchment travel time distributions and water flow in soils. Water Resources Research ,47(7): n/a–n/a. ISSN 1944-7973. doi:10.1029/2011WR010478.

Rinaldo A, Marani A, 1987. Basin scale model of solute transport. Water Resources Research 23(11): 2107–2118. ISSN 1944-7973. doi:10.1029/WR023i011p02107.

Rinaldo A, Marani A, Rigon R, 1991. Geomorphological dispersion. Water Resour. Res.
27(4): 513–525. ISSN 0043-1397.

Rinaldo A, Rodríguez-Iturbe I, 1996. Geomorphological theory of the hydrological re- sponse. Hydrol. Process. 10(6): 803–829. ISSN 1099-1085. doi:10.1002/(SICI)1099- 1085(199606)10:6<803::AID-HYP373>3.0.CO;2-N.

Rinaldo A, Vogel GK, Rigon R, Rodriguez-Iturbe I, 1995. Can one gauge the shape of a basin? Water Resour. Res. 31(4): 1119–1127. ISSN 0043-1397. doi: 10.1029/94WR03290.

Robinson JS, Sivapalan M, Snell JD, 1995. On the relative roles of hillslope processes, chan- nel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resour. Res. 31(12): 3089–3101. ISSN 0043-1397.

Rodríguez-Iturbe I, González-Sanabria M, Bras RL, 1982. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resour. Res. 18(4): 877–886. doi: doi:10.1029/WR018i004p00877.

Rodríguez-Iturbe I, Rinaldo A, 1997. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge (UK). doi:10.2277/0521004055.

Rodríguez-Iturbe I, Valdés JB, 1979. The geomorphologic structure of hydrologic response. Water Resour. Res. 15(6): 1409–1420. ISSN 0043-1397.

Saco PM, Kumar P, 2002a. Kinematic dispersion in stream networks 1. Coupling hydraulic and network geometry. Water Resour. Res. 38: 14 PP. doi:200210.1029/2001WR000695.

Saco PM, Kumar P, 2002b. Kinematic dispersion in stream networks 2. Scale issues and self-similar network organization. Water Resour. Res. 38(11): 1245. ISSN 0043-1397. doi:10.1029/2001WR000694.

Sivapalan M, 2003. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrol. Process. 17(5): 1037–1041. ISSN 0885-6087. doi: 10.1002/hyp.5109.

Sivapalan M, Jothityangkoon C, Menabde M, 2002. Linearity and nonlinearity of basin re- sponse as a function of scale: Discussion of alternative definitions. Water Resour. Res. 38: 5. doi:200210.1029/2001WR000482.

Smith MB, Koren VI, Zhang Z, Reed SM, Pan JJ, Moreda F, 2004. Runoff response to spatial variability in precipitation: an analysis of observed data. Journal of Hydrology 298(1–4): 267 – 286. ISSN 0022-1694. doi:http://dx.doi.org/10.1016/j.jhydrol.2004.03.039. The Distributed Model Intercomparison Project (DMIP).

Snell JD, Sivapalan M, 1994. On geomorphological dispersion in natural catchments and the geomorphological unit hydrograph. Water Resour. Res. 30(7): 2311–2323. ISSN 0043-1397.

Tarboton DG, Bras RL, Rodriguez-Iturbe I, 1991. On the extraction of channel networks from digital elevation data. Hydrological Processes 5(1): 81–100. ISSN 1099-1085. doi: 10.1002/hyp.3360050107.

Valdés JB, Fiallo Y, Rodríguez-Iturbe I, 1979. A rainfall-runoff analysis of the geomor- phologic IUH. Water Resources Research 15(6): 1421–1434. ISSN 1944-7973. doi: 10.1029/WR015i006p01421.

van der Tak LD, Bras RL, 1990. Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. Water Resources Research 26(10): 2393–2400. ISSN 1944-7973. doi:10.1029/WR026i010p02393.

Wang CT, Gupta VK, Waymire E, 1981. A geomorphologic synthesis of nonlinearity in sur- face runoff. Water Resour. Res. 17(3): 545–554. doi:198110.1029/WR017i003p00545.

Wilkinson L, Friendly M, 2009. The History of the Cluster Heat Map. The American Statistician 63(2): 179–184. doi:10.1198/tas.2009.0033.

Woods R, Sivapalan M, 1999. A synthesis of space-time variability in storm response: Rainfall, runoff generation, and routing. Water Resour. Res. 35(8): 2469–2485. doi: 199910.1029/1999WR900014.

Zoccatelli D, Borga M, Viglione A, Chirico GB, Blöschl G, 2011. Spatial moments of catch- ment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrol- ogy and Earth System Sciences 15(12): 3767–3783. doi:10.5194/hess-15-3767-2011.